Publication No. 85-e07

Wa-13-0020

ANDREA BEATTY RINIKER Director

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

7272 Cleanwater Lane, LU-11 • Olympia, Washington 98504-6811 • (206) 753-2353

MEMORANDUM March 25, 1986

To:

Darrel Anderson, Southwest Regional Office

From:

Dale Clark Dkc

Subject:

Seashore Villa Wastewater Treatment Plant Limited Class II Inspec-

tion, July 1-2, 1985

ABSTRACT

On July 1 and 2, 1985, the Water Quality Investigations Section conducted a limited Class II inspection at the Seashore Villa wastewater treatment plant (WTP). During the inspection, the effluent biochemical oxygen demand (BOD5) and total suspended solids (TSS) exceeded the National Pollutant Discharge Elimination System (NPDES) permit limits. Wastewater was observed to surge through the plant, resulting in solids loss and low mixed liquor suspended solids (MLSS) in the aeration basin. Chlorinated effluent was being recycled through the secondary clarifier. Overall, the facility did not appear to meet the NPDES permit requirements.

INTRODUCTION

A limited Class II inspection was done at the Seashore Villa WTP on July 1 and 2, 1985, at the request of the Ecology Southwest Regional Office (SWRO). The study objectives were to:

- 1. Describe plant operation and flow scheme.
- 2. Document plant loading and treatment efficiency.
- 3. Compare inspection data with the effluent limitations given in NPDES permit number WA-003806-7.

Limited Class II inspections are not designed to provide in-depth plant evaluations concerned with design and process control.

A receiving water study conducted along with this Class II inspection is documented in another report (Kendra and Determan, 1985).

This study was conducted by Dale Clark while the SWRO was represented by Darrel Anderson. The plant operator was not present during the inspection.

Memo to Darrel Anderson Seashore Villa Wastewater Treatment Plant Limited Class II Inspection, July 1-2, 1985

SETTING

The treatment plant is located on the west shore of the Johnson Point Peninsula about five miles north of Olympia (Figure 1). It serves the Seashore Villa mobile home park (population approximately 174) and a Department of Natural Resources (DNR) research laboratory located just south of the WTP.

The WTP is a package plant consisting of an aeration basin, secondary clarifier, two chlorine contact chambers, and a sludge storage tank (Figure 2). It is covered and fenced on all sides to prevent entry. Secondary treatment occurs using the extended aeration process. Clarifier solids are returned to the aeration basin or wasted to the sludge storage tank for holding and eventual pickup by a tank truck. Effluent is disinfected in the first chlorine contact chamber, flows into the second chamber to provide additional contact time, then discharged to Budd Inlet through a 275-yard-long, 3-inch line.

METHODS

Samples collected during the inspection given in Table 1. Sampling locations are shown in Figure 2.

The 24-hour composite samples were collected using Manning^R automatic composite samplers set to collect 250 mL every 30 minutes. Samples were placed on ice and shipped to the Ecology environmental laboratory at Manchester, Washington. Sample holding times and analytical methods approved by the U.S. Environmental Protection Agency (USEPA, 1982) or found in Standard Methods (APHA, AWWA, WPCF, 1985) were followed during the inspection.

Physical dimensions of the in-plant unit processes were measured to determine volume and calculate plant capacity. Sludge depth was measured with a "Sludge Judge" depth indicator. Flow measurement was attempted using a Manning dipper; however, the small size of the discharge line prevented accurate measurement. Flow was therefore estimated based on water-use records from the community well. The mean well flow was approximately 11,000 gallons per day (gpd), which is lower than expected for a community of this size. Five hundred gpd was added to the well flow to account for wastewater contribution from the DNR facility. Thus, the plant flow was estimated to be 11,500 gpd.

RESULTS AND DISCUSSION

Table 2 presents the analytical results and sludge depth measurements. The plant did not appear to be effectively treating the wastewaters. Table 3 confirms this observation by comparing expected removal rates to the removal rates observed during the inspection (Meta Systems, 1973). The observed removals were far less than the expected rates.

Memo to Darrel Anderson Seashore Villa Wastewater Treatment Plant Limited Class II Inspection, July 1-2, 1985

Table 3. Removal efficiencies, Seashore Villa STP, July 1-2, 1985.

Parameter	Expected <u>1</u> / Removal Rate (percent)	Observed Removal Rate (percent)
BOD	80	56
TSS	85	5
COD	80	36
Total Phosphorus	25	+15
Total Inorganic Nitroger	n 35	+6

1/Meta Systems, 1973.

Table 4 compares inspection results with NPDES permit limits. Effluent BOD and TSS concentrations (mg/L) and loadings (lbs/day) exceeded permit limits. Fecal coliform (FC) concentration and pH were within acceptable ranges.

Table 5 includes physical measurements of the process units and compares the measurements with Ecology (1980) design criteria. The facility appears to have adequate physical capacity to handle the incoming waste load. The low MLSS concentration (800 - 1,000 mg/L) and high F:M ratio (0.16 - 0.19 lb BOD5/D/lb MLSS) suggest that an increased MLSS concentration may be necessary to improve treatment.

During the survey, the following operational problems were observed:

- 1. A three-inch return line from chlorine contact chamber #1 was recycling chlorinated effluent to the secondary clarifier.
- 2. High effluent solids concentrations were resulting from solids washout of the secondary clarifier.

Prior to the inspection, a return line from the chlorine contact chamber #1 was left open, allowing chlorinated effluent to recycle into the secondary clarifier and eventually back to the aeration basin via the RAS line. The clarifier was tested for total residual chlorine. During aeration, 0.15 mg/L was detected, while none was detected when the aerators were off. The return may have had a negative impact on the plant's biological population. It is recommended that recycle of chlorinated effluent be prevented.

The high effluent solids concentration appeared to be related to operating characteristics of the aeration system. The aerator operated on a 45-minutes-on, 15-minutes-off cycle, with the RAS pumps operating during the "on" portion of the cycle. During the "on" cycle, mixed liquor in the aeration basin rose by approximately four inches. When the aerators stopped, the excess water in the basin (estimated at 670 gallons) surged into the secondary clarifier. Effluent grab samples taken during periods of surging had TSS values of 340

Memo to Darrel Anderson Seashore Villa Wastewater Treatment Plant Limited Class II Inspection, July 1-2, 1985

and 250 (mg/L)--well above NPDES permit limits and greater than the effluent composite concentration of 200 mg/L. This flushing action could cause the low MLSS concentration and poor treatment efficiency noted earlier in the report. It is recommended that the surging problem be corrected. A follow-up inspection (walk-through) performed on January 15, 1986, showed the surging and solids loss problems still existed.

Sludge deposits in the secondary clarifier and the chlorine contact chamber were minimal, probably due to the surging and solids loss already described (Table 5). Solids wasting at the facility occurs on an infrequent and irregular basis. This is expected in situations where washout problems routinely occur.

With available measuring equipment, accurate flow determination was not possible during the inspection. In addition, no reliable method exists for determining the DNR laboratory contribution. It is recommended that a method to measure DNR and treatment plant flows be devised and instituted.

Laboratory Review

It was not possible to split samples because the operator was absent. WTP laboratory analyses for BOD_5 are contracted to the Lacey-Olympia-Thurston County treatment facility (LOTT) laboratory; fecal coliform analyses are contracted to the Thurston County Health Department.

Refer to the Tamoshan Class II inspection (1986) for comparison of the laboratories.

RECOMMENDATIONS AND CONCLUSIONS

- 1. Correct surging in the aeration basin. The surging has resulted in a solids washout problem. The problem is probably a key factor contributing to low MLSS in the aeration basin and effluent exceeding the NPDES permit limit for BOD_5 and total suspended solids.
- 2. Discontinue the chlorinated effluent recycle from chlorine contact basin (#1) to the secondary clarifier.
- 3. Increase solids concentration (MLSS) in the aeration basin to improve biological treatment and reduce effluent BOD_5 .
- 4. Measure flows in the WTP effluent line and the DNR influent line.

DC:cp

Attachments

LITERATURE CITED

- APHA, AWWA, WPCF, 1985. Standard Methods for the Examination of Water and Wastewater, 16th Ed., APHA, Washington, D.C. 1268 pp.
- Ecology, 1980. Criteria for Sewage Works Design. Ecology Repot DOE-78-5. February 1980 (revised October 1985). 357 pp.
- Kendra, W. and T.A. Determan, 1985. Effects of Three Small Treatment Plants on Budd Inlet Receiving Waters. Ecology memorandum of November 6, 1985, to Tom Eaton, Olympia, WA. 22 pp.
- Meta Systems, Inc., 1973. Effluent Changes. Prepared for the U.S. Environmental Protection Agency, Contract No. 68-01-0566.
- U.S.EPA, 1982. Methods for Chemical Analysis of Water and Wastes. Environmental Monitoring and Support Laboratory, Cincinnati, OH. 298 pp.

Table 1. Sampling schedule for Class II facility inspection performed at Seashore Villa wastewater treatment plant, July 1-2, 1985. All values in mg/L unless otherwise noted.

pictos empeles angula a mesa ^a third third global a blan Amelia a iningla an anti a miningla	ing and the second seco			Fi	eld /	Anal	yses		magness segimeng.			Lal	ora	tory	Ana	lyses	5			
	Date	Time	pH (S.U.)	Spec. Cond. (umhos/cm	Temp (°C)	Dissolved Oxygen	Sludge Depth (ft)	Residual Chlorine	рн (S.U.)	Spec. Cond. (umhos/cm	000	B0D ₅	Soluble BOD ₅	Nutrients (5)	Solids (4)	MLSS	Turbidity (NTU)	Alkalinity	Oil & Grease	Fecal Coliform (#/100 mL)
Grab Sample	es																			
Influent	7/01 7/01 7/02 7/02 7/02	1350 1450 1000 1155 1400	X X X X	X X X X	X X X X														Χ	
Aeration Basin	7/01 7/02	1345 1120				X X	Χ									Χ				
Clarifier	7/02	1130					Χ													
Chlorine Contact Chamber #1	7/02	1150					Χ													
Chlorine Contact Chamber #2	7/02	1150					Χ													
Effluent	7/01 7/01 7/01 7/02 7/02 7/02	1315 1400 1455 0945 1148 1405	X X X X X	X X X X	X X X X X	X X X X X		X X X X X											X	X
Composite S	amples	_																		
Influent	7/01 7/02	1310 1100	Χ	Χ	Χ				χ	Χ	χ	χ	χ	χ	χ		χ	χ		
Effluent	7/01 7/02	1250 1110	Χ	Χ	Χ	of the state of th	*Odd Miles Line Of The State of	· War - Francisco	Χ	Χ	Χ	Χ	χ	Χ	χ	ng control to place and the	χ	χ		

Table 2. Analytical results, Ecology Class II facility inspection performed at Seashore Milla MTP, July 1-2, 1985. All values in ma/L unless otherwise noted.

	Date	Time	PH (5.U.)	Spec. pH Cond. Date Time (S.U.) (umhos/cm)	14m	0.0		Sludge Resid, Depth Onl. (ft)	PH (S.U.)	Spec. Cond. (umbos/cm)	000	. 000 B00k	Solu- Pile Pile	į	N. CO	Nutrients (5	(5)	908	Total	Sol	Solu- Nutrients (5) Solu- Solu- Nutrients (5) Solida (4) No. Mo. M. Mo. M. A. M. M. A. M. M. A.	;	5.	* # # # # # # # # # # # # # # # # # # #	Alk, Resid.	Fecal Colt.
Grab Samples	*																		3		25	1	E .	2	3 04.648	
Influent	= 167 762 762 763 763 763 763 763	1350 1450 1000 1155 1400	6.7 7.0 7.3 7.3	580 540 560 750 435	18.2 18.2 17.9 17.5																				140	
Aeration Basin	7/01	1345				0.0		1.1													170,1	170,180 1,000; 800	008			
Secondary Clarifier	7/03	1300						2.0																		
Chlorine 7/03 Contact Chamber(s) #1, 12	7/03	1300						1.0,1.3																		
Effluent	7/01 7/01 7/01 7/02 7/02 7/02	1315 1400 1455 0945 1148 1405	6.7 6.9 6.9 6.6	580 575 575 540 890 885	18.2 18.2 17.9 18.3	1.2 0.6 0.3 1.2 1.1	3,5 7,5 1,2 1,3 7,3																		2	£
Composite Samples Influent 7/01 7/02	7/01 7/02	1310 1100 <u>1</u> /	1/ 8.3	250	3.0				6.5	751	450 270		120	0.2	0.1	11.3 €	£3	7.6	640	30	310 38		3	ř	•	3
Effluent	7/01	1250 11101	1250 11101/ 6.9	570	3.7				6.7	572	290 120	120	9	8.2	<0.1 4.0		10.1	11.2	610		200 47		120	55		

Seashore Villa WTP loadings and comparison with NPDES permit limits. All mg/L unless otherwise noted. Table 4.

etherstandschaft, order			Adaptive settlemental versity maintains were very execution of a 17 kill southernoon	ACTION AND AND AND AND AND AND AND AND AND AN		N	NPDES Effluent Limitations	ıt Limi	tations	A CONTRACTOR OF THE PROPERTY O
	Concen-	Flow		Percent		Monthly Average	verage		Weekly Average	erage
Sample Type	tration	(MGD)	lbs/day	Removal		lbs/day	mg/L lbs/day col/100 mL mg/L lbs/day col/100 mL	mg/L	lbs/day	col/100 mL
Influent BOD5	270	0.0115	25.9							
Effluent BOD5	/120/	0.0115	/11.5/	56	30	8.0		45	2.6	
Influent TSS	210	0.0115	20.2							
Effluent TSS	/2007/	0.0115	/19.2/	4.6	30	8°.		45	5.6	
Effluent FC	100 80						200			400
Effluent pH 6.6 - 5.9	6.6 - 5.9		And the second s			shall not	shall not be outside the range of 6.0 - 9.0	the ra	nge of 6.	0 - 6.0

/// = Exceeds NPDES permit limit, either monthly, weekly, or both.

Table 5. Comparison of inspection measurements to Ecology design criteria (1980) - Seashcre Villa, July 1985.

		80	80D ₅		TSS						
Influent	Flow (MGD)	mg/L l	lbs/day	mg/L	lbs/day						
Inspection Measurements	0.0115	270	25.9	210	20.2						
Aeration Basin			Mixed	Mixed-Liquor Suspended	Σ Ա		Aerator Loacing (1	b 80D/		Tank Size	
	Process Modification	Flow Regime	Solids (mg/L)	S	(16s 800 ₅ /D/ 16 MLSS)	Detention Time (hr)	1000 ft ³ of Tank Volume)		Length Wi (ft.) (f	Width Depth <u>2</u> / (ft.) (ft.)	h <u>2</u> / Volume) (gal.)
Inspection Measurements	extended aeration	complete mix		800, 1000	0.16 - 0.19	35.8	11.3		25 10	.8 8.5	17,170
Ecology Criteria <u>3</u> /	13/		2,000	2,000-6,000	0.121/	10-24	10-25				
Secondary Clarifier	fier	Surf	ace Overf	low Rate	Solids Load	ing Rate4/		Tar	Tank Size		
		Avera Flow (gpd/	Average Pe Flow Fl (gpd/ft ²) (g	Average Peak Flow Flow5/ (gpd/ft2) (gpd/ft2)	Average Peak Flow Flow <mark>5/</mark> (lbs/day/ft ²) (lbs/day.	Peak Flow <u>5</u> / (lbs/day/ft ²)	Length (ft.)	Width (ft.)	Depth <u>2</u> / (ft.)	Surface / krea (ft2)	e Volume (gal.)
Inspection Measurements	urements	177		532	1.3	4.0	10.8	9	8.5	64.8	4,120
Ecology Criteria3/	/ _E ³ /	200-400	400	800	25	40					
Chlorine Contact Chambers	t Chambers		Dete	intion Tir	Detention Time (minutes)		Tank	Tank size			
Inspection Measurements	urements		Flow (M.nimum)	num)	Peak Flow <u>5</u> /	Diame (ft.)	ter	Depth <u>2</u> / (ft.)	Volume (gal.)		
Chamber #1 Chamber #2 Total of #1 and #2 Ecology Criteria <u>3</u> /	#2		60 60 120 60		20 20 40 20	3.2	8 8		480 480 960		
$\frac{1}{2}$ Criteria for F:M are 0.05 - 0.15 lb BOD ₅ / $0/1$ b MLVSS. 0.04 - 0.12 lb BOD ₅ / $0/1$ b M SS	F:M are 0.05 - BODE/D/1b MIS	0.15 lb l	300 ₅ /0/1b	MLVSS.	Assumption of 80% volatile solids in MLSS was made to convert criteria to	% volatile so	lids in MLS	S was mad	le to conve	ert crite	ria to

0.04 - 0.12 1b B0D5/D/1b MLSS.

2/Depth is depth of water and solids in tank.

3/ Ecology criteria are a general guideline of operation (Ecology, 1980).

4/Assume 100% recycle to aeration basin.

5/Estimated based on three times flow determined during inspection.

Figure 1. Locations of Seashore Villa WTP and Department of Natural Resources Laboratory, 1985.

Figure 2. Flow scheme and sampling locations - Seashcre Villa, July 1985.